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The eight tables in this work give solutions a, b and k, n to two related Dio- 
phantine equations 

Kp = a2 + Db2 and Kkp = n2 + D, 

with K = 1 and 2, D = 5, 6, 10, and 13, and for all primes p < 100,000 for which 
solutions exist. In each table there are approximately 2400 primes, that is, about 
one-fourth of all primes < 100,000. 

The subtitle indicates that this volume is Part I of a larger work and implies 
that other values of D will be forthcoming. The significance of these particular 
values, 5, 6, 10, and 13, is that in all quadratic number fields, R(V/-D), these 
are the smallest positive D's for which unique factorization of the algebraic integers 
is lacking. In all four cases the class number is 2 (there are two classes of ideals) 
and this is associated with the two values of K. For about one-half of the p's for 
which -D is a quadratic residue a solution exists for K = 1, and for the remaining 
one-half, for K = 2. It may be noted that the K = 1 table is always somewhat shorter 
than its companion K = 2 table. This is as expected, since there are generally more 
primes of the form 4Dm + N than of the form 4Dm + R if R is a quadratic residue 
of 4D and N is not (see MTAC, v. 13, 1959, p. 272-284). 

There is an interesting, twelve-page introduction to the background ideal and 
class number theory. It is boldly stated there, p. xii, that unique factorization 
exists for square-free D > 0 only if D = 1, 2, 3, 7, 11, 19, 43, 67, and 163. How- 
ever, this has never been fully proven. This background theory culminates in 
several theorems due to H. P. F. Swinnerton-Dyer. 

The tables were done by hand, "with the help of two long strips of paper-A 
and B," and were carefully checked in a variety of ways. Why the solutions to 
kp = n2 + 6 for p = 7 and p = 31 are listed, on p. 36, as k, n = 6, 6 and 22, 26 
respectively rather than the obvious 1, 1 and 1, 5 is not clear to the reviewer. 
But this slip seems to be exceptional. 

The tables may be used as lists of prime ideals in the four fields, R(A-D). 
The dust jacket suggests a second application, that they "may contribute to the 
understanding of such unsolved questions as 'Is the number of primes of form 
n2 + 5, or n2 + 6, etc., infinite or finite?' " In this respect, however, it may be re- 
marked that the data here are rather meager since the primes are <lOD, while 
in 10 minutes an IBM 704 can count such primes up to 3.24- 1010 (see M1TAC, v. 
13, 1959, p. 78-86). In fact the 16th prime of the form n2 + 5 is 86441 and is 
the largest listed in this volume, while the 4368th prime of that form is 32,371, 
926, 089. Nonetheless, the data are sufficient to indicate at least rough agreement 
with the Hardy-Littlewood conjecture. Since 

L5(1) = 1.405 > L6(1) = 1.283 > L1o(l) = 0.993 > L13(1) = 0.871 

we should expect the relative density of primes to increase as we progress from 
n2 + 5 to n2 + 6 to n2 + 10 to n2 + 13 (Mlath. Comp., v. 14, 1960, p. 324-326). 
This is indeed the case. 
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An apparent anomaly concerned n2 + 13, where there were numerous primes 
from n = 0 to 68 and from n = 264 to 298, but none in between. This striking 
maldistribution was most alarming, and threatened dire consequences to the Hardy- 
Littlewood conjecture, until the real explanation was found-pages 105 to 120 
were missing in the reviewer's copy. Aside from this gross lapse, the volume has 
the usual elegance of the Royal Society Mathematical Tables. 

D. S. 

6[F, LI.-C. B. HASELGROVE in collaboration with J. C. P. MILLER, Tables of the 
Riemann Zeta Function, Royal Society Mathematical Tables No. 6, Cambridge 
University Press, New York, 1960, xxiii + 80 p., 29 cm. Price $9.50. 

These important and fascinating tables are concerned primarily with ?(4 + it), 
the zeta function for real part 1, and with its zeros. This complex function is ex- 
pressed both in artesian and polar forms: 

' (4 + it) = aii (4 + it) + iD (2 + it) 
= Z W~e-io) 

In the latter, 0(t) is continuous, with 0(0) = 0, and the signed modulus Z(t), 
given by 

Z(t) = T-iit r(1 + -!it)- ( I + it) Z~~~t) 
-I i) 

changes sign at every zero. The nth zero, 'y , is the nth solution of Z(y) = 0 and 
the ntth Gram point, gn , is the solution of 0(g9n) = n. 

Table I gives 610(4 + it), .4(4 + it), Z(t), and 0(t) to 6D for t = 0(0.1)100. 
6Rt(1 + it) and W-(l + it) are also listed. 

Table II gives Z(t) to 6D for t = 100(0.1)1000. 
Table III has two parts. Part 1, for n = 1(1)650, gives Yn , gn-1 i and An = 

(1/7r)ph"'(! + i'n) to 6D and I?'(4 + iyn)I to 5D. Part 2, for n = 651(1)160, 
gives y,, to (D and | ?'(4 + iy,)I to 5D. 

Table IV gives Z(t) to 6D for four other ranges of t, 

t = 7000(0.1)7025, 17120(0.1)17145, 100000(0.1)100025, 250000(0.1)250025. 

Also for these four ranges are given the zeros to 6D and derivatives to 5D. There 
are 28, 32, 38, and 42 zeros in the four ranges respectively. 

Table V gives (1/or)phFr( + it) to 6D for t = 0(0.1)50(1)600(2)1000. 
The inclusion of gn and 0,, in part 1 of Table III allows the reader to study 

Gram's "Law" which states that the zeros and Gram points are interlaced: 

Oyn-1 < gn.-2 < 'Y. < An-1 < 71n+1 . 

A violation occurs if I 0n I > The first violation is for n = 127. The first double 
violation is for n = 379 and 380-i.e., there are three Gram points between Y379 and 

7380- In all, there are 22 violations in these 650 zeros. Gram's "Law" may also be 
expressed by saying that the complex ?(4 + it) approaches its zero via the 4th 
or 3rd quadrant. Thus the following statistics for these 650 zeros are of interest: 
4th quadrant, 320 cases; 3rd quadrant, 308; 2nd quadrant, 13, and 1st quadrant, 9. 


